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Overview 

Timeline 
• Project start date: Oct. 1, 2012 
• Project direction and continuation 

are evaluated annually 

Budget 
• FY13 DOE funding: $250K 
• FY14 DOE funding: $250K 

Barriers 
• 10-15% energy generated in an IC 

engine is lost to parasitic friction.  
• Current engine lubricants and their 

additive packages were designed for 
ferrous alloy bearing surfaces. 

• Compatibility between oil anti-wear 
additives and non-metallic hard 
coatings is little known. 

• Fundamental understandings gained 
in this study will help guide future 
development of engine lubricants. 

• A synergistic lubricant-coating 
combination will provide maximized 
benefits in fuel economy. 

Partners 
• Lubrizol 
• Cytec Industries 
• Northeast Coating Technologies 
• Eaton 
• ANL 
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Relevance 

• Objective: Investigate the compatibility of engine lubricant anti-wear (AW) 
additives, specifically conventional ZDDP and newly developed ionic liquids, 
with selected hard coatings. 

• Potential benefits:  
– Fundamental understandings gained in this study will help guide future 

development of engine lubricants 
– A synergistic lubricant-coating combination will provide maximized benefits in 

fuel economy.  
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Milestones 

• Demonstrate the lubricant-coating compatibility via tribological testing and 
analysis at room temperature (June 30, 2013) – complete!  

• Reveal the tribo-chemical interactions for selected lubricant-coating 
combinations at room temperature (September 30, 2013) – complete!  

• Tribological testing and analysis of the AW-coating compatibility at 100 oC 
(June 30, 2014) – on schedule 

• Understand the tribochemical interactions of candidate lubricant-coating 
combinations at 100 oC (September 30, 2014) – on schedule 
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Approach 
• Experimentally study the friction and wear behavior for selected non-metallic hard 

coatings lubricated by selected anti-wear additives via tribological bench testing 
in well-defined conditions.  
– Anti-wear additives: ZDDP and ionic liquid 
– Hard coatings: Borides and DLC 
– Counterface material: AISI 52100 steel 

• Mechanistically investigate the tribochemical interactions between the anti-wear 
additives and the coating surfaces via comprehensive tribofilm characterization. 
- Top surface examination: 

o SEM: worn surface morphology for wear mode analysis 
o EDS: element analysis 

- Tribofilm layered chemical analysis aided by ion sputtering: 
o XPS: composition-depth profile and binding energy spectrum 
o Auger: surface element mapping  

- Tribofilm cross-sectional examination aided by focused-ion-beam (FIB): 
o TEM: nanostructure and tribofilm thickness measurement 
o Electron diffraction: phase determination 
o EDS: element mapping 
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Comprehensive tribofilm characterization 

Focused-ion-
beam (FIB) 

Scanning electron microscopy 
(SEM)/Energy-dispersive X-ray spectroscopy 
(EDS) 
 Worn surface morphology  
 Surface element analysis 

Transmission electron microscopy (TEM)/Electron 
Diffraction/EDS 
 Tribofilm nanostructure and thickness 
 Cross-sectional element mapping 

X-ray photoelectron spectroscopy (XPS): 
 Composition-depth profile B 
 Binding energy spectrum 

Auger electron spectroscopy (AES):  
 Surface element mapping (better spatial 

resolution than XPS) 
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Technical accomplishments – summary  

• The mechanism for the ZDDP (and ionic liquid) tribofilm formation on non-metallic 
coatings has been revealed: ZDDP/IL reacting with metallic wear debris and the new 
compounds are compressed onto the non-metallic surface. 

– This could be a significant part of the tribofilm formation on a metallic surface as well, in 
addition to the well-received process of ZDDP/IL directly reacting with the metallic surface. 

• The ZDDP and IL formed tribofilms on both boride and DLC coatings with various surface 
coverage and thicknesses. 

• Tribofilms on coatings are composed of reaction products of metal oxides, sulfites (ZDDP 
only), metal phosphates, and metallic iron (wear debris). 

• Tribofilms on boride coatings cover the surface by 80-95% and are up to 60-70 nm thick. 
• Tribofilms on DLC have low surface coverage (20-30%) and are <25 nm thick, probably 

due to poor bonding between tribochemical products and DLC. 
• Surprisingly increased wear was observed on the counterface when using the ZDDP (or 

IL) together with the DLC coating. 
– The IL showed better protection for the steel counterface than the ZDDP though.  
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Selected lubricant anti-wear additives 

• Conventional secondary ZDDP (Lubrizol) 
• New oil-miscible ionic liquid [P66614][DEHP] (ORNL) 

(CH2)5CH3
P

(CH2)5CH3

(CH2)13CH3

H3C(H2C)5 -O
P

O OCH2CH(C2H5)CH2CH2CH2CH3

OCH2CH(C2H5)CH2CH2CH2CH3

IL ZDDP 

Both ZDDP and IL form anti-wear tribofilms on metallic 
surfaces, but will they work on hard coatings?  

1 wt% AW treat rate in 
SAE 0W-30 base oil 
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Selected hard coatings 

Coating Composition Substrate Process Thick-ness 
(µm) 

Hardness 
HK (GPa) 

Roughness 
Ra (µm) 

Supplier 

TiB2  TiB2  M2 steel PVD 2.5 21.2 0.16 Eaton 
AlMgB14-
TiB2  

AlMgB14 
+50 vol%TiB2  

M2 steel PVD 3.0 29.1 0.16 Eaton 

DLC a-C:H M2 steel PVD 3.5 18.7 0.16 HEF/NCT 

All three coatings 
possess high hardness 

and wear-resistance, 
but will they work with 
ZDDP or ionic liquid? 
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Friction and wear results 

• Boride coatings generated a lightly lower friction coefficient than the DLC in both lubricants 
• Similar friction coefficient between the two AW additives 
• No measurable wear on coatings. 
• The IL-additized oil generated lower ball (counterface) wear than the ZDDP-additized oil for 

all three coatings – suggesting that the IL protects the steel ball better than the ZDDP. 

Wear of coating Wear rate of steel ball 
(x10-8 mm3/N-m) 

Steady-state average 
friction coefficient  

Oil+ 
1%ZDDP 

Oil+ 
1%IL 

Oil+ 
1%ZDDP 

Oil+ 
1%IL 

Oil+ 
1%ZDDP 

Oil+ 
1%IL 

TiB2 Not measurable 7.2 1.3 0.11 0.11 
AlMgB14-TiB2 Not measurable 7.0 3.4 0.11 0.11 
DLC Not measurable 5.3 2.4 0.12 0.12 
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ZDDP-lubricated AlMgB14-TiB2 – SEM imaging 
and AES elemental mapping detected a tribofilm 

10 µm 5/22/13 10.0kV 

Ti (red) + Zn (green) + P (blue) 

10 µm 5/22/13 10.0kV 10 µm 5/22/13 10.0kV 

Ti (red) + Zn (green) + P (blue) Ti (red) + Zn (green) + P (blue) 

After 30 sec ion sputtering After 2 min ion sputtering 
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ZDDP-lubricated AlMgB14-TiB2 – AES 
elemental mapping hinted tribofilm composition 

10 µm 5/22/13 10.0kV 

After 30 sec ion sputtering 

Zn 

P C 

O Ti Fe 

S 

• Zn-O, Zn-S, Fe-S matching maps  zinc oxide, 
zinc sulfite, and iron oxide(s) 

• Fe-P-C-O  maps suggest iron phosphates 
(inorganic and organic) 

Fe supplied by 
the the steel ball  
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ZDDP-lubricated AlMgB14-TiB2 – TEM cross-
sectional imaging revealed the tribofilm ~50 nm 
thick and dominated by amorphous phases 

TEM image 

FIB sample extraction 

~50 nm 
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ZDDP-lubricated AlMgB14-TiB2 – XPS analysis 
provided further info of the tribofilm composition 

Depth-composition profile 
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IL-lubricated AlMgB14-TiB2 – Auger elemental 
mapping suggested possible tribofilm composition 

10 µm 5/21/13 10.0kV 

Ti (red) + P (green) + C (blue) 

Ti P 

O 

C 

Fe 
Fe supplied by 
the wear debris 
from the steel ball  

• No AW self-reacted 
compounds like ZDDP 

• All compounds are 
results of reactions 
between the IL and 
wear debris from the 
steel ball! 

• Fe-P-C-O and Fe-O 
matching maps  iron 
phosphates (inorganic 
and organic) and iron 
oxides 

• P-C matching maps  
majority of C from 
non-fully decomposed 
organophosphate 
anions 

After 30 sec ion sputtering 
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IL-lubricated AlMgB14-TiB2 – TEM cross-
sectional imaging and XPS analysis of the tribofilm 
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Tribofilms on TiB2 – similar to those on AlMgB14-
TiB2 (85-95% coverage, up to 60-70 nm thick)  

ZDDP tribofilm IL tribofilm 
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Tribofilms on DLC – lower coverage (20-30%) 
and thinner (<25 nm) 

    

  C (red) + Zn (green) + Fe (blue) 

10 µm   ZDDP tribo-film 

  C (red) + Fe (green) + P (blue) 

10 µm   IL tribo-film 

Auger elemental 
mapping 

confirmed the 
low tribofilm 

coverage! 
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Responses to Previous Year Reviewers’ 
Comments 

• Not applicable – this project was not reviewed last year.  
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Collaboration 

• Lubrizol  
– Provided a commercial secondary ZDDP 

• Cytec Industries 
– Supplied feed stocks for synthesizing the ionic liquid 

• Northeast Coating Technologies 
– Provided two commercial DLC coatings 

• Eaton 
– Provided two commercial boride coatings 

• ANL 
– Provided two research coatings 
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Remaining Challenges and Barriers 

• Increased counterface wear when using ZDDP (or IL) and DLC together 
– Hypothesis: competition between AW tribofilm formation and graphite transfe  poor 

tribofilm integrity  higher wear rate of the steel ball.  
– Further characterization involving ultra-high resolution TEM to validate the hypothesis. 

• Will the counterface wear increase when using ZDDP (or IL) and other hard 
coatings?  

– AlMgB14-TiB2 coating will be used to study this counterface wear issue. 

• Lack of understanding of their compatibility on friction behavior in mixed 
lubrication. 

– Results so far have been focused on boundary lubrication. 
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Proposed Future Work 

Rest of FY 2014 
• Further investigation of the issue of increased counterface wear for both DLC and 

boride coatings 
 

FY 2015 
• Investigate the compatibility between ZDDP/IL and hard coatings on friction behavior in 

mixed lubrication. 
– The majority of literature studies were focused on boundary lubrication. 

– Literature suggests the ZDDP tribofilm commonly increases friction in mixed lubrication for a 
steel-steel contact. Our IL study showed much lower mixed lubrication friction than ZDDP. 

– ORNL has a newly built Variable Load/Speed Journal Bearing Tester (VLBT), suitable for this 
task. 
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Summary 
• Relevance: Investigate the compatibility of engine lubricant anti-wear (AW) additives, specifically 

conventional ZDDP and newly developed ionic liquids, with selected commercial hard coatings to help 
guide future engine lubricants development. 

• Approach/Strategy:  
– Experimentally study the friction and wear behavior for selected non-metallic hard coatings 

lubricated by selected anti-wear additives via tribological bench testing in well-defined conditions.  
– Mechanistically investigate the tribochemical interactions between the anti-wear additives and the 

coating surfaces via comprehensive tribofilm characterization. 

• Accomplishments:  
– The mechanism for the ZDDP (and IL) tribofilm formation on non-metallic coatings revealed. 
– The AW tribofilms on boride and DLC coatings with various surface coverage and thicknesses. 
– Surprisingly increased wear was observed on the counterface when using the ZDDP (or IL) together 

with the DLC coating. 

• Collaborations:  
– Lubrizol, Cytec Industries Coatings: NCT, Eaton, and ANL 

• Proposed Future Work: 
– Rest of FY14: Counterface wear and roughness/temperature effects 
– FY 15: Compatibility on friction behavior in mixed lubrication 
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Technical Back-up Slides 
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Ionic liquids (ILs) for lubrication 

Ionic liquids are ‘room temperature 
molten salts’, composed of cations & 
anions, instead of neutral molecules. 

• ILs as neat lubricants or base stocks 
– High thermal stability (up to 500 oC) 
– High viscosity index (120-370) 
– Low EHL/ML friction due to low 

pressure-viscosity coefficient 
– Wear protection by tribo-film formation 
– Suitable for specialty bearing 

components 

• ILs as oil additives 
– Potential multi-functions: anti-wear/EP, 

FM, corrosion inhibitor, detergent 
– Ashless  low sludge 
– Allow the use of lower viscosity oils 
– Advantage: cost effective and easier to 

penetrate into the lubricant market 
– Problem: most ILs insoluble in oils  

(CH2)5CH3
P

(CH2)5CH3

(CH2)13CH3

H3C(H2C)5 -O
P

O CH2CH(CH3)CH2C(CH3)3

CH2CH(CH3)CH2C(CH3)3

(CH2)5CH3
P

(CH2)5CH3

(CH2)13CH3

H3C(H2C)5 -O
P

O OCH2CH(C2H5)CH2CH2CH2CH3

OCH2CH(C2H5)CH2CH2CH2CH3

B. Yu, and J. Qu*, et al., Wear (2012) 289 (2012) 58. 
J. Qu, et al., ACS Applied Materials & Interfaces 4 (2) (2012) 997.   

[P66614][DEHP] (IL18) 

[P66614][DTMPP] (IL16) 

• ORNL-developed oil-miscible ILs:  




